
2025年度 後期 幾何学 2 第 6回 演習問題

1. 数列 (an)n∈N が αに収束することの, ε-N 論法による定義を答えよ.

(解答例 1) 任意の ε > 0に対して, ある Nε ∈ Nが存在して,「Nε < nならば |an − α| < ε」が成り立つ.
(解答例 2) 任意の ε > 0に対して,「Nε < nならば |an − α| < ε」が成り立つような Nε ∈ Nが存在する.

2. 以下は数列 an = 1/n2 (n ∈ N)に対して lim
n→∞

an = 0であることを, ε-N 論法に基づいて証明しようとした, 間違っ
た証明である. (1)間違っている点, (2)どのように修正すればよいか, (3)正確な証明, を記せ.

任意に ε > 0を取る. このとき, ある Nε ∈ Nが存在して「Nε < n =⇒ |an − 0| < ε」が成り立つ.
何故ならば, Nε < nのとき

|an − 0| = 1

n2
(∵ an の定義)

<
1

N2
ε

(∵ Nε < n)

< ε

であるから. よって lim
n→∞

an = 0が成り立つ.

(解答例)

(1) Nε ∈ Nの存在を示していない.*1 それゆえに不等式「1/N2
ε < ε」が成り立つ理由が書かれていない (書けない).

(2)「1/N2
ε < ε」が成り立つように Nε ∈ N を取りたいので, この不等式を Nε について解くと Nε > 1/

√
ε となる.

したがって Nε ∈ Nを

Nε >
1√
ε
を満たす自然数

として取る旨を書けばよい.

(3) 任意に ε > 0を取る. このとき, Nε ∈ Nを不等式 Nε > 1/
√
εを満たすように取ると

Nε < n =⇒ |an − 0| < ε

が成り立つ. 実際, Nε < nならば

|an − 0| = 1

n2
(∵ an の定義)

<
1

N2
ε

(∵ Nε < n)

< ε (∵ Nε > 1/
√
ε)

であるから. よって lim
n→∞

an = 0が成り立つ.

*1 例えば「方程式 x2 + 1 = 0 の実数解の一つを α とおく.」という論理は間違っている. 何故ならば x2 + 1 = 0 に実数解は存在しないからである.
このように,「条件 ∼を満たす Nε ∈ Nが存在する」と主張したい場合は注意が必要である.
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3. 以下は数列 an = 1/(n+ 3) (n ∈ N)に対して lim
n→∞

an = 0であることを, ε-N 論法に基づいて証明しようとした, 間
違った証明である. (1)間違っている点, (2)どのように修正すればよいか, (3) 正確な証明, を書け.

任意に ε > 0を取る. このとき Nε ∈ Nが存在して「Nε < n =⇒ |an − 0| < ε」が成り立つ.
何故ならば, ε = 0.1として Nε ∈ Nを Nε > 8を満たす自然数とすると, Nε < nならば

|an − 0| = 1

n+ 3
(∵ an の定義)

<
1

Nε + 3
(∵ Nε < n)

<
1

8 + 3
(∵ Nε > 8)

< 0.1

= ε

であるから. よって lim
n→∞

an = 0が成り立つ.

(解答例)

(1) εは任意の値としなければいけないはずが, 0.1という特定の値のみしか考えていない.

(2) εを特定の値に限定せず, 文字のまま証明を行う. 具体的には「1/(Nε + 3) < ε」が成り立つようにしたいので, こ
の不等式を Nε について解いて, Nε >

1
ε − 3となるような Nε ∈ Nを取る旨を書けばよい.

(3) 任意に ε > 0を取る. このとき, Nε ∈ Nを不等式 Nε >
1
ε − 3を満たすように取ると

Nε < n =⇒ |an − 0| < ε

が成り立つ. 実際, Nε < nならば

|an − 0| = 1

n+ 3
(∵ an の定義)

<
1

Nε + 3
(∵ Nε < n)

< ε (∵ Nε > 1/ε− 3)

であるから. よって lim
n→∞

an = 0が成り立つ.
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発展. (成績には含めません. 余力のある人は解いてみてください.) 数列 (an)n∈N は αに, 数列 (bn)n∈N は β に収束すると
仮定する. すなわち

• 任意の ε > 0に対して, ある Nε ∈ Nが存在して,「Nε < nならば |an − α| < ε」が成り立つ.
• 任意の ε > 0に対して, あるMε ∈ Nが存在して,「Mε < nならば |bn − β| < ε」が成り立つ.
が成り立っているとする. このとき, 数列 (an + bn)n∈N は α+ β に収束することを, 以下の誘導に従って証明せよ.

（a）任意の ε > 0に対して, Lε ∈ Nを Lε = max{Nε,Mε}とおく (Nε とMε のうち最大のもの). このとき

Lε < n =⇒「|an − α| < ε かつ |bn − β| < ε」

ことを証明せよ.

(解答例)

Lε ∈ Nの定義より, Nε ≤ Lε かつMε ≤ Lε が成り立つ. Nε ≤ Lε および (an)n∈N が αに収束することから

Lε < n =⇒ (Nε < n =⇒) |an − α| < ε

となる. 同様にして

Lε < n =⇒ (Mε < n =⇒) |bn − β| < ε

が成り立つ. 以上より示された.

（b）以下の不等式を証明せよ.

|(an + bn)− (α+ β)| ≤ |an − α|+ |bn − β|.

(解答例)

任意の a, b ∈ Rに対して |a+ b| ≤ |a|+ |b|であることより

|(an + bn)− (α+ β)| = |(an − α) + (bn − β)| ≤ |an − α|+ |bn − β|

が成り立つ.

（c）数列 (an + bn)n∈N は α+ β に収束することを証明せよ.

(解答例)

任意に ε > 0を取る. 数列 (an)n∈N は αに, 数列 (bn)n∈N は β に収束するので, ある Nε,Mε ∈ Nが存在して

Nε < n =⇒ |an − α| < ε かつ Mε < n =⇒ |bn − β| < ε

が成り立つ. ここで, Lε ∈ N を Lε = max{Nε,Mε} とおく. このとき, Nε ≤ Lε かつMε ≤ Lε である. した
がって, Nε < nならば

|(an + bn)− (α+ β)| ≤ |an − α|+ |bn − β| < ε+ ε = 2ε

が成り立つ. まとめると
任意の ε > 0に対して, ある Lε ∈ Nが存在して, Lε < nならば |(an + bn)− (α+ β)| < 2ε

が示された. ここで, ε > 0 が任意の値を取るならば 2ε > 0 も任意の値を取ることに注意すると, これは数列
(an + bn)n∈N が α+ β に収束することを意味している.

担当:野本慶一郎


